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Design Method for Butter–Cheby Bandpass Filters
With Even Number of Resonators

Hee-Ran Ahn, Senior Member, IEEE, and Sangwook Nam, Senior Member, IEEE

Abstract—A design method for the bandpass filters with even
number of resonators is presented for compacter size and wider
bandwidth. The design method is based on the conventional filters
with two resonators defined as a scattering parameter at a given
frequency and a characteristic impedance of a 0 lumped-element
equivalent circuit. The filter designed in this paper can be termi-
nated in equal impedances and may have ripple responses at the
same time for the wider bandwidths. Since the filter suggested in
this paper has advantages that both Butterworth and Chebyshev
filters possess, it is called a Butter–Cheby filter to distinguish from
conventional filters. For better performance of the Butter–Cheby
filter, a way to make transmission zeros is also discussed. To verify
the design method, a Butter–Cheby filter with four resonators
having 0.01-dB ripple is fabricated with distributed and lumped
elements and measured at a design center frequency of 1 GHz.
The measured results are in good agreement with the prediction,
achieving less than 0.4-dB insertion loss, more than 20-dB return
loss, and a transmission zero of 2 GHz.

Index Terms—Butter–Cheby bandpass filters (BPFs), Butter-
worth and Chebyshev filters, design method of wideband filters,
lumped-element BPFs.

I. INTRODUCTION

F OR WIRELESS communication systems, remarkable
improvements have been achieved in reducing mass and

volume. A significant portion of such improvement has come
from numerous innovations in the design of microwave filters
and multiplexers [1]–[7]. The multiplexer, consisting of several
filters, is indispensable for compact-sized front-end design
and has therefore received substantial attention from circuit
designers. For the various applications of the multiplexers, the
bandpass filter (BPF) design is important and the name of the
BPFs is determined depending on which filtering functions
being used. They are Bessel [8], [9] Butterworth, Chebyshev
[10], and Jacobian elliptic filters [11]. The Bessel and Butter-
worth filters have maximally flat response in the passband. The
Chebyshev-type 1 or 2 filters have ripples in the passband or
stopband, respectively. The elliptic filter has ripples in both
passband and stopband. If no ripple of the elliptic filters is as-
sumed in the stopband, the filter characteristics are very similar
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to those of the Chebyshev-type 1 filter. The Chebyshev filter in
this paper is meant as the Chebyshev-type 1 filter hereafter.
If the number of resonators of the BPF is even, it has advan-

tages to build multiplexers [1], [2]. With even-order , the But-
terworth low-pass prototype is terminated in equal impedances,
but no ripple response is possible. The Chebyshev filter is able to
have ripple responses, but equal termination impedances are im-
possible. If both ripple response and equal termination imped-
ances are needed at the same time, additional J- or K-inverters
like 90 (270 ) transmission-line sections, gaps, discontinuities,
or coupling structures are required for the Chebyshev BPF re-
sponses [12].
In this paper, a design method for the BPFs with an even

number of resonators is presented to have equal termination im-
pedances for compacter size and ripples for wider bandwidth
without any additional impedance (admittance) inverter. All the
poles of the Chebyshev filter with an even number of resonators
are located at different frequencies where perfect matching can
be achieved, and no pole exists at the design center frequency,
which is the reason why the termination impedances should be
different. On the other hand, all the poles of the Butterworth fil-
ters are located at a design center frequency, which is the reason
why perfect matching can be achieved at a design center fre-
quency. In order that any filter with an even number of res-
onators can be terminated in equal termination impedances and
may have ripple response at the same time, at least two poles
should be located at a design center frequency, and the rest of
poles should be placed outside of the center frequency to have
ripple responses. For this, a method how to split the poles over-
lapped at the design center frequency to outside of the center
frequency is suggested by using a relation between a charac-
teristic impedance of 0 lumped-element equivalent circuit (0
LEC) and the element values of Butterworth low-pass proto-
type. The 0 LEC will be derived later. The resulting filter does
not belong to either Butterworth or Chebyshev filters. Thus, the
filters suggested in this paper are called Butter–Cheby filters to
distinguish from the conventional filters. Several examples of
the Butter–Cheby filters with – are demonstrated, and
a way to make transmission zeros is treated for better filter per-
formance. To verify the design method, a Butter–Cheby filter
with is fabricated on a substrate (RT/Duroid 5870,

mm) with lumped and distributed elements.
Measured results are in good agreement with the predicted ones.

II. FILTERS WITH EVEN NUMBER OF RESONATORS

A. Suitable Number of Resonators

To design a channel filter in a multiplexer, the number of
resonators may be determined in accordance with the filter
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Fig. 1. Input impedances of two types of filters. (a) Two resonators. (b) Three
resonators.

TABLE I
INPUT IMPEDANCES OF BUTTERWORTH BPFs WITH AND

performance required. All the channel filters designed to meet
the requirement are connected to build a multiplexer, and
conventional designs of the multiplexers include common port
approaches [3]–[5], [7] that all the channel filters are connected
at a common port in parallel [3]–[5], [7] or in series. In the case
of the parallel connection, if the input impedance of the channel
filter is near open-circuited at the resonance frequencies of
other channel filters, it is advantageous to build the multiplexer
[1], [2].
Two Butterworth filters with two and three resonators are de-

signed at 1 GHz, and absolute values of the input impedance
are calculated/compared in Fig. 1 and in Table I where

is the number of resonators. In this case, fractional bandwidth
and termination impedances of both filters are 0.4 and 50 . At
a design center frequency of 1 GHz, the input impedances of
both filters are equally 50 . At 0.84 GHz, close to the center
frequency of 1 GHz, the input impedance with is 136.2 ,
while that with is 42.4 . At 0.5 GHz, slightly outside of
the center frequency, that with is 13.8 , whereas 256.1
with . At 3 and 5 GHz, those with are 466.2 and
845.6 , while those with are 7.58 and 4.18 . The filter
with two resonators are near open circuit even slightly outside
of the design center frequency, which may be advantageous for
the multiplexers, whereas those with are near short cir-
cuit. Due to the advantage of the BPFs with an even number of
resonators, the filters with even will be investigated.

B. Butter–Cheby Filters

The low-pass prototype is, in general, defined as the low-pass
filter, of which the element values are normalized to source re-

sistance or conductance to make the source resistance or con-
ductance equal to unity, defined by and . With
even order , the two termination impedances (source and load)
should be different for the Chebyshev filters, but equal to each
other for the Butterworth filters. In this paper, new types of fil-
ters having both advantages that Chebyshev and Butterworth fil-
ters possess will be discussed. That is, the filters with even order
can be terminated in equal termination impedances and may

have ripple responses. The filters are called Butter–Cheby filters
to distinguish from the conventional Butterworth or Chebyshev
filters.
For example, with , the Chebyshev filter has four

poles located at different frequencies, by which ripples are gen-
erated. The ripple characteristics may be explained from the
Butterworth filter whose four poles are overlapped at a design
center frequency. Fig. 2 explains the pole locations and fre-
quency responses of where those of the Chebyshev filter
are in Fig. 2(a) and (b) and those of the Butter–Cheby filter are
in Fig. 2(c) and (d). To have the Chebyshev ripple response,
two of four poles of the Butterworth filter overlapped at a de-
sign center frequency are separated from the center frequency
to the right and left frequencies by and , as de-
tailed in Fig. 2(a), where is a design center frequency. The
remaining two poles are also split in a similar way by
and . The frequency distances of and are
approximately the same, but not equal to each other. So do those
of and . The resulting frequency response is plotted
in Fig. 2(b) where almost perfect matching appears at the pole
locations, but does not at . Due to the ripple, the Chebyshev
filter has steeper roll-off and wider bandwidth. The termination
impedances should, however, be different with . To have
the same termination impedances of the Chebyshev filter, addi-
tional - or -inverters like 90 (270 ) transmission-line sec-
tions, gaps, discontinuities, and coupling structures are needed.
Just like the ripple of the Chebyshev filter was elucidated,

the ripple may be produced by using the Butterworth design
method to have equal termination impedances and wider band-
width. For the equal termination impedances to be possible, two
of four poles are left at the center frequency, and two others are
moved to the right and left frequencies by and
in Fig. 2(c). The consequential frequency response is plotted in
Fig. 2(d). The way to generate ripples by moving the poles over-
lapped at a center frequency will be discussed using the charac-
teristic impedance of 0 LEC of a transmission-line section and
a conventional design method of the BPFs with two resonators
[1].

III. FILTER DESIGNS

A. 0 Lumped-Element Equivalent Circuit

A transmission-line section with a characteristic impedance
of and electrical length of is depicted in Fig. 3(a),
and its lumped-element equivalent circuit in Fig. 3(b) [13]. For
the transmission-line section in Fig. 3(a), the even- and odd-
mode impedances are

(1a)

(1b)
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Fig. 2. Pole locations and resulting frequency responses of . (a) Pole loca-
tion of Chebychev filter. (b) Frequency response of the Chebychev filter. (c) Pole
location of Butter–Cheby filter. (d) Frequency response of the Butter–Cheby
filter.

Fig. 3. Equivalent circuits of transmission-line sections with a characteristic
impedance of . (a) Transmission-line section with electrical length of
. (b) Lumped-element equivalent circuit with . (c) Transmission-line sec-
tion with electrical length of . (d) Lumped-element equivalent circuit with

.

In the lumped-element equivalent circuit in Fig. 3(b), the even-
and odd-mode impedances are

(2a)

(2b)

From the two sets of equations in (1) and (2), the inductance
and capacitance in Fig. 3(b) are computed as

(3a)

(3b)

Fig. 4. 0 LEC. (a) Connecting two half circuits with positive and negative
electrical lengths. (b) Moving the positive inductance of close to .
(c) Final circuit of 0 LEC.

For in Fig. 3(c), substituting into in (3) results in
and in Fig. 3(d).

Connecting in cascade two halves of each transmission-line
section with positive or negative electrical length results in
zero phase delay of a transmission-line section, as described in
Fig. 4(a). Since a parallel connection of and results in
0 susceptance, the inductance of can be moved close to
like the circuit in Fig. 4(b). Negative reactance of and
negative susceptance of become positive susceptance
and positive reactance such as

(4a)

(4b)

Applying the relation in (4), the final circuit of 0 LEC is ob-
tained as that in Fig. 4(c). Associated with angular resonance
frequency of , the following relation yields:

(5)

The characteristic impedance of the transmission-line sec-
tion in Fig. 4 is

(6)

With the length of close to 0 in (6), the characteristic
impedance of the transmission line section in Fig. 4 be-
comes and the value is

(7)
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Fig. 5. BPF with .

B. Filter Design With

A BPF with is described in Fig. 5 where it consists
of series and shunt resonators having inductances and
and capacitances and . The BPF in Fig. 5 has the same
form as that of 0 LEC in Fig. 4(c), and therefore is expressed
with the characteristic impedance of the 0 LEC. The two
termination impedances are equally , and is defined as

. The design equations of the BPF
related with the [1] are

(8a)

(8b)

where

(9)

where and are operating and resonance frequencies, and
is a transmission scattering parameter at a given fre-

quency , where . Linking those (8) and (9) to the con-
ventional Butterworth filter design [11], [12], [14], the charac-
teristic impedance and in (8) and (9) are expressed as

(10a)

(10b)

where and are the element values of Butterworth low-pass
prototype, and with and
passband edges (3-dB insertion-loss edges).
From (9) and (10), the attenuation of the filter is calculated

as

(11)

where is and a mapping function
to transfer a low-pass prototype into a BPF with
and . With [11],
[12], [14] and the attenuation in (11) is therefore 3 dB at
and . In the conventional design, since the element values of

Fig. 6. Frequency responses of Butter–Cheby filters with . (a)
. (b) .

and are fixed, the fractional bandwidth of is only one
value. The bandwidth may, however, be changeable by varying
and in (11) where the fractional bandwidth is inversely

proportional to and . As far as the termination impedances
are equal to each other, perfect matching appears at a design
center frequency, but the maximum bandwidth can be achieved
when in Fig. 5. To see the influence of and on
the frequency response of the filter, the new element values
and are defined as

(12)

where is a real positive number.
Several filters were simulated at a design center frequency of

1 GHz by varying , and the simulated frequency responses are
plotted in Fig. 6. With , the filter is the same as the conven-
tional Butterworth filter. With , the filter has the max-
imally flat response, but the 3-dB bandwidth is reduced. When

, the bandwidth increases, and more bandwidths are ob-
tained with smaller. The bandwidth may be broadened by con-
trolling the value of and , but the return-loss performance
does not seem to be better accordingly. To have both insertion-
and return-loss bandwidths increased, ripples are needed for the
Butterworth filter design. As explained in Fig. 2(c), two poles
are required for the perfect matching at a design center fre-
quency. Therefore, any ripple with two resonators in Fig. 5 is
not easy.

C. Filter Design With

For more than 2, the design equations (8)–(10) need to be
generalized such as

(13a)

(13b)

(13c)

(13d)
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Fig. 7. BPF with .

where

(13e)

(13f)

where is a positive integer and possible to and
are element values of the Butterworth low-pass prototype, and

is the ratio of to . With , the
value of is only 1. The inductances and capacitances become

and in (8) and in (10a),
and in (10b).

With is 1 and 2 and two parallel and two series res-
onators are therefore needed as displayed in Fig. 7. The element
values with of the Butterworth low-pass prototype are

and [11], [12], [14]. The
characteristic impedance made by the first and second
resonators (Fig. 7) is and by the third and
fourth ones . In this case, to
have perfect matching at a design center frequency. When

and
[11], [12], [14]. The product of is also
unity. For is also unity.
To have the ripple responses with even, i.e., to move the poles
overlapped at a design center frequency, needs to be
changed to , but the following relation should be sat-
isfied to have perfect matching at a design center frequency:

(14)

With , to satisfy the relation in (14), and
should be

(15a)

(15b)

where is a real positive number.
Varying in (15), the filters with and were de-

signed at a center frequency of 1 GHz, and the calculated capac-
itances and inductances are written in Table II. The frequency
responses are plotted in Fig. 8 where the frequency responses of

and are in Fig. 8(a) and (b), respec-
tively.
When , the frequency response is the same as that of the

conventional Butterworth filter. When , it has the maxi-
mally flat response, but the bandwidth decreases. With

TABLE II
INDUCTANCE AND CAPACITANCE VALUES FOR THE BUTTER–CHEBY FILTER

WITH GHz, , AND

Fig. 8. Frequency responses of Butter–Cheby filters with . (a)
. (b) .

to , the filters have ripples. The frequency responses with
meet those with at four frequencies. Two of them

are located at the design center frequency, and two others are
placed on the frequency response with , where peak values
of between two poles [see Fig. 8(b)] exit. The two frequen-
cies where the peak value of is produced are not sym-
metric with respect to the center frequency, because the filter
itself with is inherently asymmetric. When , the
peak value is about 28.3 dB [see Fig. 8(b)], when , it
is about 16.5 dB and when , it about 9.7 dB. With
decreasing, the peak values of between two poles in-

crease. Due to the ripples in Fig. 8, the bandwidths of the filters
may be enlarged, compared to those of the conventional Butter-
worth filter, or, . The filters with were designed
based on the Butterworth element values, but the frequency re-
sponses have ripples (Fig. 8). Therefore, the filters are called
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Fig. 9. Frequency responses of the Butter–Cheby filters with are com-
pared with the conventional Chebyshev filters. (a) 0.1-dB ripples. (b) 0.01-dB
ripples.

TABLE III
INDUCTANCE AND CAPACITANCE VALUES FOR THE

BUTTER–CHEBY FILTER WITH 0.01-dB RIPPLE

Butter–Cheby filters to distinguish from the conventional But-
terworth or Chebyshev filters.
The Butter–Cheby filters are compared with two conven-

tional Chebyshev filters in Fig. 9. The Chebyshev filters were
chosen to have 0.01- and 0.1-dB insertion-loss ripples and
the equi-ripple bandwidth 0.4. Note that the fractional band-
width is a 3-dB bandwidth and different from the ripple
bandwidth defined by the Butter–Cheby or Chebyshev filter
having ripples. The insertion losses of 0.01 and 0.1 dB are
return losses of 26.383 and 16.4277 dB, respectively, under the
assumption of lossless elements. From the frequency responses
of Butter–Cheby filters in Fig. 8(b), to have 16.4277-dB return
loss, should be approximately 0.8. For 26.383-dB return loss,
should be between 0.8 and 0.9 [see Fig. 8(b)], and the exact

value of for the return loss is 0.887. With close to unity, the
ripple bandwidths become smaller. For a 40% Butter–Cheby
filters with 0.01-dB ripple, is calculated, and for a
40% Butter–Cheby filters with 0.1-dB ripple, is the same as
that of the conventional Butterworth filter. That is, the fractional
bandwidth of is a parameter to design the Butter–Cheby
filters, but the resulting ripple bandwidth of the Butter–Cheby
filters is not always the same as the fractional bandwidth of the
conventional Butterworth filter. Data of the Butter–Cheby filter
with the 0.1-dB ripple are those with and in
Table II and those with 0.01-dB ripple in Table III.
The four filters are compared in Fig. 9 where the solid and

dotted lines are the frequency responses of the Butter–Cheby
and Chebyshev filters, respectively. The frequency responses
with 0.1-dB ripple are in Fig. 9(a) and those with 0.01-dB
ripple in Fig. 9(b). Two types of filter responses in Fig. 9 are
identical in terms of bandwidths and skirt characteristics, but

Fig. 10. Frequency responses of the Butter–Cheby filters with different band-
widths.

only pole locations are different. The results (Fig. 9) show that
the Butter–Cheby filters can possess the advantages that both
Chebyshev and Butterworth filters have; steeper roll-off, wider
bandwidths, and equal termination impedances.
Varying means changing the element values of the But-

terworth low-pass prototype. If the element values of the
Butter–Cheby filters are and , they are connected
with such as

(16a)

(16b)

With close to unity, the peak value of between two
poles becomes smaller [see Fig. 8(b)]. This tendency is indepen-
dent of the fractional bandwidth of , but the frequencies where
the two frequency responses with and intersect
are dependent on the fractional bandwidth. The new element
values of and in (16) can be used just like those
of the conventional Chebyshev or Butterworth filters. For the
Butter–Cheby filters with 0.01-dB ripple in Fig. 9(b), the new el-
ement values are and .
Using them, four Butter–Cheby filters were additionally

simulated by varying the factional bandwidths 0.54, 0.65,
0.75, and 0.85 and compared with the conventional Chebyshev
filter with in Fig. 10 where the frequency response
with a dotted line is that of the conventional Chebyshev filter.
The Butter–Cheby filter being compared to the Chebyshev
filter with , number and location of the poles are
about the same, but sharper slope characteristic is shown with
the Butter–Cheby filter, as expected. The bandwidth of the
Butter–Cheby filter with shows the widest, while
that with shows the smallest. The frequency re-
sponses of the Butter–Cheby filters in Fig. 10 are the results
scaled by the fractional bandwidths, or, the ripple bandwidths.
The new elements of and may also be employed
for termination impedance and frequency scaling as well.

D. Filter Design With

The Butter–Cheby filter with may be considered as a
filter that one filter with is placed in the middle of another
filter with . The values of for and for are
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Fig. 11. Frequency responses of Butter–Cheby filters with . (a) .
(b) .

therefore used. The following relations hold:

(17a)

(17b)

(17c)

Two types of simulation were carried out for the
Butter–Cheby filters with by fixing and varying
. The simulation results are plotted in Fig. 11 where those
with and are in Fig. 11(a) and (b), respec-
tively. In both plots, the dotted lines without symbols are the
conventional Butterworth filters. As expected, two poles are
located at the design center frequency of 1 GHz and four
others are located at other different frequencies. With
fixed in Fig. 11(a), when , two poles outside of the
center frequency are located nearby and the peak value of
between poles is 35.6 dB. With and , those are
23.14 and 16.42 dB. With smaller, the two poles outside

of the center frequency are separated further. When is
fixed in Fig. 11(b), the two poles outside of 1 GHz are located
nearby with and separated further with smaller.
With , the two poles outside of the center frequency
look like being overlapped. By the combination of and ,
the Butter–Cheby filters may be designed to satisfy the filter
performance demanded.

E. Filter Designs With

The Butter–Cheby filter with may be considered as a
filter that one filter with is placed in the middle of another
filter with . Two different values of and are therefore
needed. The following relations hold:

(18a)

(18b)

(18c)

(18d)

Fig. 12. Frequency responses of Butter–Cheby filters with . (a)
. (b) .

Several Butter–Cheby filters with were simulated by
fixing and varying , and the simulation results are plotted in
Fig. 12 where those of the Butter–Cheby filters with
and in Fig. 12(a) and (b), and thin dotted lines are
the frequency responses of the conventional Butterworth filters
with . The frequency responses with are very
similar to those with in Figs. 8–10. Four poles are over-
lapped at the design center frequency of 1 GHz, and two poles
are degenerated at each pole location outside the design center
frequency.
The Butter–Cheby filter with may be seen as a filter

where one filter with is inserted into the center of another
filter with . Three values of and are therefore
needed such as

(19a)

(19b)

(19c)

(19d)

(19e)

The Butter–Cheby filters with were simulated by
varying and and the simulation results are plotted in
Fig. 13 where those of the Butter–Cheby filters with
and in Fig. 13(a) and (b), and thin dotted lines are
the frequency responses of the conventional Butterworth filters
with . The number of poles overlapped at the design
center frequency is four and two poles are degenerated at each
pole location outside the center frequency. Therefore, the pole
locations of the Butter–Cheby filters with are similar to
those with .
The Butter–Cheby filter with may be considered as

a filter that one filter with is inserted into the center of
another filter with . That with is regarded as a
filter that one filter with is located at the center of another
filter with . Therefore, the concept may be expanded to
the Butter–Cheby filters with an even number of resonators.
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Fig. 13. Frequency responses of Butter–Cheby filters with . (a)
and . (b) and .

TABLE IV
ELEMENT VALUES FOR THE BUTTER–CHEBY FILTERS WITH

F. Influence of Variables ( and ) on Pole Locations

For , the element values for the
Butter–Cheby filters in Fig. 11 are given in Table IV where

are those of the conventional Butterworth filter.
The conventional values are between 0.517 and 1.931, while
those for the Butter–Cheby filters are greater than 0.157 and
less than 1.931. When in Fig. 11(a), two poles with

outside the center frequency are separated further
than those with or . When fixed
in Table IV, only is changed. The value of (1.352) with

is less than those with or and closer
to unity. That is, if is closer to unity, the poles are located
in wider range of frequencies in Fig. 11(a). When and

in Table IV, since the value of is 1.159 and three
values of and become closer to unity, their poles in
Fig. 11(b) spread wider than those with and
in Fig. 11(a). For the design of the Butter–Cheby filters, it
is, therefore, important to make all the element values close
to unity by varying and . When and in
Fig. 11(b), the four poles outside the center frequency are
located wider than any other case, but it is natural that the
return-loss response deteriorates to connect two nearby poles
naturally. Since the wider pole-location does not mean the
wider bandwidth, any optimization is therefore desired for the
Butter–Cheby filter designs.
For
and . In this case, since the difference be-

tween and is very small, the possibility to choose

Fig. 14. Filter with having a transmission zero.

between two values of 1.08 and 0.92 is re-
stricted, keeping the relation in (14). The same reason occurs
for the Butter–Cheby filters with . Due to the reason,
two poles are degenerated at each pole location in Figs. 12 and
13.

IV. TRANSMISSION ZEROS

A. Transmission Zeros

The frequency responses of a filter with even are not sym-
metric with respect to the center frequency and show gentler
slope characteristic in the frequencies higher than the center fre-
quency. Due to this, a transmission zero is needed, and a filter
configuration with for the transmission zero is depicted
in Fig. 14 where a transmission-line section is inserted between
a parallel resonator and ground. The parallel resonator (Fig. 14)
with an inductance and a capacitance is connected in se-
ries with the transmission-line section having the characteristic
impedance and the electrical length . The impedance
made by the parallel resonator and the transmission-line section
is

(20)

To have a transmission zero outside of the resonance fre-
quency, the impedance of needs to be zero, which leads to

(21)

where .
To have the frequency response of the filter in Fig. 14 similar

to that in Fig. 5 in the passband, the relation between these two
types of filters in Figs. 5 and 14 holds

(22)

To satisfy the equation in (22), the following relation yields:

(23)

Equation (23) means that the design equations in (8)–(10) and
(13)–(19) may be used for the transmission zeros. To satisfy the
relation in (22), the transmission zero should be located at a
frequency higher than the center (resonance) frequency.

B. Frequency Response With Transmission Zeros

To investigate the transmission-zero frequency , the
filter with was simulated by fixing the characteristic
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Fig. 15. Frequency responses with transmission zeros.

TABLE V
TRANSMISSION ZEROS OF THE BUTTER–CHEBY FILTER WITH

, , AND

impedance to 50 and varying the transmission-line length
(Fig. 15). In this case, the center frequency is 1 GHz,

and . The resulting
inductance and capacitance values are nH,

pF, nH, and pF.
The length of is 14.76 at GHz, at

GHz, and is inversely proportional to . The cal-
culation results are in Table V where is the electrical length
at its own transmission zero frequency. The filter responses are
compared with and without the transmission zeros in Fig. 15
where the transmission zeros are really produced as designed.
The frequency responses are almost the same with each other
lower than 1 GHz, but different in the frequencies higher
than the center frequency (Fig. 15). The frequency responses
in Fig. 15 again verify that the design formulas without the
transmission zeros in (8)–(10) and (13)–(19) may be used for
the transmission zeros.
With GHz in Fig. 15, the transmission zero is

located very close to the center frequency, but scattering pa-
rameter of again jumps up to less than 20 dB. When

GHz, the transmission zero is a little bit far from
the center frequency, but the final scattering parameter of
after jumping up is less than 40 dB. Depending on applica-
tions such as multiplexers, the transmission-zero frequency can
be adjustable.

V. REALIZATION

For the fabrication of the lumped-element Butter–Cheby fil-
ters, all the inductance and capacitance values required are not
easy to get from the manufacturers. The series capacitances are
of the biggest problem among the lumped elements because
the filter performance is very sensitive to the series capacitance
value and the capacitance needs to be realized as exactly as pos-
sible. The value of the series capacitance is also sometimes too

Fig. 16. Realization of capacitances and inductances. (a) Series capacitance.
(b) and (c) Series inductance. (d) Shunt inductance. (e) Shunt capacitance.

small to be realized with commercial lumped elements, when
the center (resonance) frequency of the filter increases. How to
realize the series capacitances exactly with distributed elements
only or distributed and lumped elements combined will be dis-
cussed. Further, other inductances and capacitances will also be
investigated.

A. Series Capacitance

One set of coupled transmission-line sections with two open
circuits (distributed element) and its -type equivalent circuit
(lumped element) are depicted in Fig. 16(a). The even- and odd-
mode impedances of the coupled transmission-line sections are

and , and the electrical length is . The even- and
odd-mode admittances and of the distributed element
in Fig. 16(a) are

(24a)

(24b)

where .
Those of the lumped equivalent circuit in Fig. 16(a) are

(25a)

(25b)

By equating the two equations in (24) and (25), the lumped el-
ement values of and are

(26a)

(26b)

Applying to (26), the relation be-
tween and is obtained as

(27)

where is a coupling coefficient.
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The electrical length and the coupling coefficient asso-
ciated with the lumped elements [see Fig. 16(a)] are therefore
obtained as

(28a)

(28b)

To realize the series capacitance with the distributed element
[see Fig. 16(a)], the shunt capacitance of should be so small
to be regarded as an open circuit. If the value of is
more than 400 , the distributed element may be equivalent to
the series capacitor of only [see Fig. 16(a)]. To have higher
value of , the even-mode impedance of should be
chosen as high as possible and the length of as small as
possible. The distributed element may then be equivalent to the
series capacitance of only. The capacitance produced by the
distributed element is generally small and becomes smaller with
the operating frequency higher. The series capacitance of the
filters in Figs. 5 and 7 may be realized with distributed elements
and lumped elements combined together.

B. Other Values

To have exact values of series inductance , shunt induc-
tance , and shunt capacitance in Fig. 16, lumped elements
and transmission-line sections combined together may be used.
A transmission-line section with the characteristic impedance
of and electrical length of may be equivalent to a circuit
consisting of a series inductance and two identical shunt ca-
pacitances [13] in Fig. 16(b). Their values are expressed as

(29a)

(29b)

For the equivalent circuit [see Fig. 16(b)], absolute reactance
value of is 685 with and ,
while is 3437 with and .
When and is 1660 , while

is 8020 with and . If is
greater than 60 and is less than 10 , the transmission-line
section [see Fig. 16(b)] may therefore be considered as a series
inductance of only. Due to the fact, the series inductance
in Fig. 16(c) may be obtained as

(30)

where is a lumped element given by the manufacturers.
The exact values of the shunt inductance and shunt ca-

pacitance connected to the ground in Fig. 16(d) and (e) may
also be obtained by lumped elements of and and transmis-
sion-line sections combined together, as shown in Fig. 16(d) and
(e). The inductance of is greater than , but the capacitance
of is less than .

VI. MEASUREMENTS

To verify the design method, one microstrip Butter–Cheby
filter with 0.01-dB ripple was fabricated on a substrate (RT/

Fig. 17. Fabricated Butter–Cheby filter.

Fig. 18. Results measured and predicted are compared. (a) and (b)
. (c) .

Duroid 5870, mm) with lumped and dis-
tributed elements. The data in Tables III were therefore used for
the fabrication. If the designed values of the capacitances or in-
ductances meet those supplied by the manufactures, lumped el-
ements only were employed for the fabrication. Otherwise, dis-
tributed and lumped elements were combined. The lumped el-
ements supplied by American Technical Ceramics (ATC) were
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utilized based on the data sheets giving scattering parameters
from 0.05 to 20 GHz. A transmission-line section for the trans-
mission zero was inserted between a parallel resonator with
and (Fig. 7) and ground to have GHz. The ca-
pacitances and inductances of and (Table III) were
fabricated with lumped elements only because of nH,

pF, and pF. The other values were realized
by the combination of distributed and lumped elements. The in-
ductance of nH is made of a lumped inductor of

nH and a transmission-line section with
and [see Fig. 16(c)]. That of nH consists
of a lumped inductor of 2 nH and a transmission-line section
with and . That of nH
comprises a lumped inductor of 12 nH and a transmission-line
section with and . That of
pF is fabricated with a lumped capacitor of 9 pF connected in
parallel with another capacitance of 0.66 pF. The capacitance of
0.66 pF is realized with the form of [see Fig. 16(e)] where

pF, , and . The fabricated
Butter–Cheby filter is displayed in Fig. 17 and the frequency re-
sponses measured and predicted are compared in Fig. 18 where
frequency responses of scattering parameter of
are in Fig. 18(a) and (b) and those of are in
Fig. 18(c). As designed, the transmission zero is located around
2 GHz, and the measured return and insertion losses are better
than 20 and 0.4 dB, respectively. In general, the measured re-
sults are in good agreement with the predicted ones, given fab-
rication errors.

VII. CONCLUSION

In this paper, a new design method for the BPFs with an even
number of resonators has been suggested for compacter size and
wider bandwidth. The filters designed in this paper can be ter-
minated in equal impedances and may have ripple responses
at the same time. The resulting filter characteristics are there-
fore quite different from those of the conventional Chebyshev
and Butterworth filters, and the filters suggested in this paper
are called Butter–Cheby filters to characterize their own prop-
erties. The element values for the Butter–Cheby low-pass proto-
type can be generated arbitrarily depending on the filter perfor-
mance and scaled by bandwidth, frequency, and termination im-
pedances. The element values of the Butter–Cheby filters may
be obtained easily, by which bandpass, bandstop, and low-pass
Butter–Chebyshev filters are also possible for the compacter
size and wider bandwidths.
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